How to use variance Formula and calculate variance :
Step-1:Determine all possible outcomes
This calculator calculates the variance from set of values. First step it uses is to take square of all the values available in the entire population:
X | X2 |
---|---|
25 | 625 |
35 | 1225 |
45 | 2025 |
55 | 3025 |
Step-1: Calculate the Mean
$$\sum x\;=\;160$$
Take the square of answer and divide that value by size of population.
$$\frac{(\sum x)^2}{N}\;=\;\frac{160^2}{4}\;=$$
$$\frac{25600} {4}\;=\;6400$$
Then calculate the sum of all the square values, ∑x2
$$\sum x^2\;=\; 6900$$
Subtract,
$$\sum x^2\;-\;\frac{(\sum x)^2}{N}\;=$$
$$6400–160\;=\;6240$$
Step-13: Calculate Variance
For Variance, divide the answer with size of population,
$$σ^2\;=\;\frac{\sum x^2\;-\;\frac{(\sum x)^2}{N}}{N}\;=$$
$$\frac{6340} {4}=7576$$
So the Variance is 1585