Understand How to Calculate Volume of a Cone with Formula and Examples
In this article, you will learn what volume of a cone is. And you will also learn how to calculate the volume of a cone by using the cone volume formula.
What is Volume of a Cone?
A cone is a three-dimensional geometric shape that has a flat circular surface and a curved surface, pointed towards top. The circular base has radius and diameter and it meets a point outside the base at a height known as vertex or apex. The volume of a cone is its capacity to occupy space inside it.
In geometry, the concept of volume plays an important role in finding the capacity of a shape to occupy space or water. It explains the physical characteristics of 3D shapes.
Volume of a Cone Formula
Generally, we consider a cone to be a pyramid with a circular cross-section. So we can easily find out the volume of a cone if we have the measurements of its height of curved surface and radius of circular base. The volume of cone formula is:
how do you Find the Volume of a Cone?
We can calculate the volume of a cone if we know the measurements of radius and height. If the radius of circular base is r and height of curved surface is h then the formula for volume of a cone is:
$$ V \;=\; \frac{1}{3} π r^2 h $$
Here we will provide you information on how to find the volume of a conical shape in a stepwise method. These are:
- Measure the radius of the cone.
- Measure the height of the cone.
- Substitute the values of radius and height in the cone volume formula and simply it to get a solution.
Let’s see the following cone volume examples to understand how the volume of a cone is calculated.
As you observed in the above cone volume examples, if you know the radius and the height of the cone, it will be easy to find cone volume with the help of the formula for volume of a cone.
FAQ’s
Why Volume of a Cone is 1/3 of a Cylinder?
If a cone has the same base radius and height, it will have the same base area. But its volume is not directly base area times h, which is quite intuitive as cones with same dimensions will have lesser volume. Its volume becomes 1/3rd of the cylinder's volume.
What is the formula of a cylinder and a cone?
The volume formula of a cylinder is:
$$ V \;=\; π r^2 h $$ And the volume of cone formula is: $$ V \;=\; \frac{1}{3} π r^2 h $$