# Two's Complement Calculator

-128 to 127

-8 to 7

0-9 and A-F (16-Digits)

## Table of Content

Feedback

Two’s complement calculator finds the 2’s complement for the given binary numbers. Our online 2s complement calculator calculates the opposite of a binary number in its twos complement representation for binary, decimal, and signed binary to decimal or hexadecimal numbers.

## What Is Two’s Complement?

Two’s Complement to decimal is the mathematical operation to reform a positive binary number into a negative binary number with an equivalent negative value.

To get the 2’s complement, just exchange a certain binary number bit by bit and add 1 to the least significant bit.

## How To Calculate The Two’s Complement?

Converting the binary numbers into 2’s complement is processed by adding 1 to the right side position. With the help of the two’s complement calculator, you can change the number into one’s complement, twos complement, binary to decimal, and hexadecimal within seconds which saves you a lot of time.

Let's move on a little bit further to examine an example!

Suppose we have a number (643)10. After converting the number into the 2’s complement we get,

(1100000101)2

Now, Inverting all bits convert 1 to 0, and 0 to 1:

1st Complement = (0011111010)2

For the second complement add 1:

2nd Complement = (0011111011)2

## Working of Two's Complement Calculator:

No doubt number conversion looks daunting but decimal to 2’s complement calculator makes it easy by just putting the expressions in the field. Follow the below points to compute the 2s complement.

Input:

• Select the number option either what you want to calculate (binary, decimal, hexadecimal)
• Put the values in the field
• Chose the number of binary digits
• Tap “Calculate”

Output:

With the help of our Two’s complement calculator, you can get the following calculations:

• 2nd complement of a given number
• Decimal, binary, hexadecimal, and 1's complement
• The addition & subtraction of two's complement binary number
• Step-by-step calculation

## FAQs:

### What Is 8-bit Binary?

8-bit two complements to decimal is the indication of the positive integers from -128 to 127 (01111111).

### Where Are Two’s Complements Used?

It is mainly used to indicate binary numbers and in their arithmetic operations. It is very functional in computer number representation.

## Two’s Complement Table:

In a binary system, all numbers are a combination of two digits 0 and 1. What is the complement of -30? Look at this one in the below table.

 Decimal Two’s Complement Decimal Two’s Complement 1 1111 1111 -1 0000 0001 2 1111 1110 -2 0000 0010 3 1111 1101 -3 0000 0011 4 1111 1100 -4 0000 0100 5 1111 1011 -5 0000 0101 6 1111 1010 -6 0000 0110 7 1111 1001 -7 0000 0111 8 1111 1000 -8 0000 1000 9 1111 0111 -9 0000 1001 10 1111 0110 -10 0000 1010 11 1111 0101 -11 0000 1011 12 1111 0100 -12 0000 1100 13 1111 0011 -13 0000 1101 14 1111 0010 -14 0000 1110 15 1111 0001 -15 0000 1111 16 1111 0000 -16 0001 0000 17 1110 1111 -17 0001 0001 18 1110 1110 -18 0001 0010 19 1110 1101 -19 0001 0011 20 1110 1100 -20 0001 0100 21 1110 1011 -21 0001 0101 22 1110 1010 -22 0001 0110 23 1110 1001 -23 0001 0111 24 1110 1000 -24 0001 1000 25 1110 0111 -25 0001 1001 26 1110 0110 -26 0001 1010 27 1110 0101 -27 0001 1011 28 1110 0100 -28 0001 1100 29 1110 0011 -29 0001 1101 30 1110 0010 -30 0001 1110 31 1110 0001 -31 0001 1111 32 1110 0000 -32 0010 0000 33 1101 1111 -33 0010 0001 34 1101 1110 -34 0010 0010 35 1101 1101 -35 0010 0011 36 1101 1100 -36 0010 0100 37 1101 1011 -37 0010 0101 38 1101 1010 -38 0010 0110 39 1101 1001 -39 0010 0111 40 1101 1000 -40 0010 1000 41 1101 0111 -41 0010 1001 42 1101 0110 -42 0010 1010 43 1101 0101 -43 0010 1011 44 1101 0100 -44 0010 1100 45 1101 0011 -45 0010 1101 46 1101 0010 -46 0010 1110 47 1101 0001 -47 0010 1111 48 1101 0000 -48 0011 0000 49 1100 1111 -49 0011 0001 50 1100 1110 -50 0011 0010 51 1100 1101 -51 0011 0011 52 1100 1100 -52 0011 0100 53 1100 1011 -53 0011 0101 54 1100 1010 -54 0011 0110 55 1100 1001 -55 0011 0111 56 1100 1000 -56 0011 1000 57 1100 0111 -57 0011 1001 58 1100 0110 -58 0011 1010 59 1100 0101 -59 0011 1011 60 1100 0100 -60 0011 1100 61 1100 0011 -61 0011 1101 62 1100 0010 -62 0011 1110 63 1100 0001 -63 0011 1111 64 1100 0000 -64 0100 0000 65 1011 1111 -65 0100 0001 66 1011 1110 -66 0100 0010 67 1011 1101 -67 0100 0011 68 1011 1100 -68 0100 0100 69 1011 1011 -69 0100 0101 70 1011 1010 -70 0100 0110 71 1011 1001 -71 0100 0111 72 1011 1000 -72 0100 1000 73 1011 0111 -73 0100 1001 74 1011 0110 -74 0100 1010 75 1011 0101 -75 0100 1011 76 1011 0100 -76 0100 1100 77 1011 0011 -77 0100 1101 78 1011 0010 -78 0100 1110 79 1011 0001 -79 0100 1111 80 1011 0000 -80 0101 0000 81 1010 1111 -81 0101 0001 82 1010 1110 -82 0101 0010 83 1010 1101 -83 0101 0011 84 1010 1100 -84 0101 0100 85 1010 1011 -85 0101 0101 86 1010 1010 -86 0101 0110 87 1010 1001 -87 0101 0111 88 1010 1000 -88 0101 1000 89 1010 0111 -89 0101 1001 90 1010 0110 -90 0101 1010 91 1010 0101 -91 0101 1011 92 1010 0100 -92 0101 1100 93 1010 0011 -93 0101 1101 94 1010 00100 -94 0101 1110 95 1010 0001 -95 0101 1111 96 1010 0000 -96 0110 0000 97 1001 1111 -97 0110 0001 98 1001 1110 -98 0110 0010 99 1001 1101 -99 0110 0011 100 1001 1100 -100 0110 0100 101 1001 1011 -101 0110 0101 102 1001 1010 -102 0110 0110 103 1001 1001 -103 0110 0111 104 1001 1000 -104 0110 1000 105 1001 0111 -105 0110 1001 106 1001 0110 -106 0110 1010 107 1001 0101 -107 0110 1011 108 1001 0100 -108 0110 1100 109 1001 0011 -109 0110 1101 110 1001 0010 -110 0110 1110 111 1001 0001 -111 0110 1111 112 1001 0000 -112 0111 0000 113 1000 1111 -113 0111 0001 114 1000 1110 -114 0111 0010 115 1000 1101 -115 0111 0011 116 1000 1100 -116 0111 0100 117 1000 1011 -117 0111 0101 118 1000 1010 -118 0111 0110 119 1000 1001 -119 0111 0111 120 1000 1000 -120 0111 1000 121 1000 0111 -121 0111 1001 122 1000 0110 -122 0111 1010 123 1000 0101 -123 0111 1011 124 1000 0100 -124 0111 1100 125 1000 0011 -125 0111 1101 126 1000 0010 -126 0111 1110 127 1000 0001 -127 0111 1111 -128 1000 0000

## References:

From the source Wikipedia: Two complement, Converting from two's complement representation.

### Shaun Murphy

I'm graduated in biomedical and electrical engineering. Specialization in sports and medical topics but will gladly tackle everything you throw at him. He is a sailor, hiker, and motorcyclist in his free time.