AdBlocker Detected
adblocker detected
Calculatored depends on revenue from ads impressions to survive. If you find calculatored valuable, please consider disabling your ad blocker or pausing adblock for calculatored.
ADVERTISEMENT
ADVERTISEMENT

Two's Complement Calculator

-128 to 127

-8 to 7

0-9 and A-F (16-Digits)

ADVERTISEMENT
ADVERTISEMENT

Two’s complement calculator finds the 2’s complement for the given binary numbers. Our online 2s complement calculator calculates the opposite of a binary number in its twos complement representation for binary, decimal, and signed binary to decimal or hexadecimal numbers.

What Is Two’s Complement?

Two’s Complement to decimal is the mathematical operation to reform a positive binary number into a negative binary number with an equivalent negative value.
 
To get the 2’s complement, just exchange a certain binary number bit by bit and add 1 to the least significant bit.

How To Calculate The Two’s Complement?

Converting the binary numbers into 2’s complement is processed by adding 1 to the right side position. With the help of the two’s complement calculator, you can change the number into one’s complement, twos complement, binary to decimal, and hexadecimal within seconds which saves you a lot of time. 

Let's move on a little bit further to examine an example!

Suppose we have a number (643)10. After converting the number into the 2’s complement we get, 

(1100000101)2

Now, Inverting all bits convert 1 to 0, and 0 to 1: 

1st Complement = (0011111010)2

For the second complement add 1:

2nd Complement = (0011111011)2

Working of Two's Complement Calculator:

No doubt number conversion looks daunting but decimal to 2’s complement calculator makes it easy by just putting the expressions in the field. Follow the below points to compute the 2s complement.

Input:

  • Select the number option either what you want to calculate (binary, decimal, hexadecimal)
  • Put the values in the field 
  • Chose the number of binary digits
  • Tap “Calculate” 

Output:

With the help of our Two’s complement calculator, you can get the following calculations:

  • 2nd complement of a given number
  • Decimal, binary, hexadecimal, and 1's complement
  • The addition & subtraction of two's complement binary number 
  • Step-by-step calculation

FAQs:

What Is 8-bit Binary?

8-bit two complements to decimal is the indication of the positive integers from -128 to 127 (01111111).

Where Are Two’s Complements Used?

It is mainly used to indicate binary numbers and in their arithmetic operations. It is very functional in computer number representation. 

Two’s Complement Table:

In a binary system, all numbers are a combination of two digits 0 and 1. What is the complement of -30? Look at this one in the below table. 

Decimal Two’s Complement Decimal Two’s Complement
1 1111 1111 -1 0000 0001
2 1111 1110 -2 0000 0010
3 1111 1101 -3 0000 0011
4 1111 1100 -4 0000 0100
5 1111 1011 -5 0000 0101
6 1111 1010 -6 0000 0110
7 1111 1001 -7 0000 0111
8 1111 1000 -8 0000 1000
9 1111 0111 -9 0000 1001
10 1111 0110 -10 0000 1010
11 1111 0101 -11 0000 1011
12 1111 0100 -12 0000 1100
13 1111 0011 -13 0000 1101
14 1111 0010 -14 0000 1110
15 1111 0001 -15 0000 1111
16 1111 0000 -16 0001 0000
17 1110 1111 -17 0001 0001
18 1110 1110 -18 0001 0010
19 1110 1101 -19 0001 0011
20 1110 1100 -20 0001 0100
21 1110 1011 -21 0001 0101
22 1110 1010 -22 0001 0110
23 1110 1001 -23 0001 0111
24 1110 1000 -24 0001 1000
25 1110 0111 -25 0001 1001
26 1110 0110 -26 0001 1010
27 1110 0101 -27 0001 1011
28 1110 0100 -28 0001 1100
29 1110 0011 -29 0001 1101
30 1110 0010 -30 0001 1110
31 1110 0001 -31 0001 1111
32 1110 0000 -32 0010 0000
33 1101 1111 -33 0010 0001
34 1101 1110 -34 0010 0010
35 1101 1101 -35 0010 0011
36 1101 1100 -36 0010 0100
37 1101 1011 -37 0010 0101
38 1101 1010 -38 0010 0110
39 1101 1001 -39 0010 0111
40 1101 1000 -40 0010 1000
41 1101 0111 -41 0010 1001
42 1101 0110 -42 0010 1010
43 1101 0101 -43 0010 1011
44 1101 0100 -44 0010 1100
45 1101 0011 -45 0010 1101
46 1101 0010 -46 0010 1110
47 1101 0001 -47 0010 1111
48 1101 0000 -48 0011 0000
49 1100 1111 -49 0011 0001
50 1100 1110 -50 0011 0010
51 1100 1101 -51 0011 0011
52 1100 1100 -52 0011 0100
53 1100 1011 -53 0011 0101
54 1100 1010 -54 0011 0110
55 1100 1001 -55 0011 0111
56 1100 1000 -56 0011 1000
57 1100 0111 -57 0011 1001
58 1100 0110 -58 0011 1010
59 1100 0101 -59 0011 1011
60 1100 0100 -60 0011 1100
61 1100 0011 -61 0011 1101
62 1100 0010 -62 0011 1110
63 1100 0001 -63 0011 1111
64 1100 0000 -64 0100 0000
65 1011 1111 -65 0100 0001
66 1011 1110 -66 0100 0010
67 1011 1101 -67 0100 0011
68 1011 1100 -68 0100 0100
69 1011 1011 -69 0100 0101
70 1011 1010 -70 0100 0110
71 1011 1001 -71 0100 0111
72 1011 1000 -72 0100 1000
73 1011 0111 -73 0100 1001
74 1011 0110 -74 0100 1010
75 1011 0101 -75 0100 1011
76 1011 0100 -76 0100 1100
77 1011 0011 -77 0100 1101
78 1011 0010 -78 0100 1110
79 1011 0001 -79 0100 1111
80 1011 0000 -80 0101 0000
81 1010 1111 -81 0101 0001
82 1010 1110 -82 0101 0010
83 1010 1101 -83 0101 0011
84 1010 1100 -84 0101 0100
85 1010 1011 -85 0101 0101
86 1010 1010 -86 0101 0110
87 1010 1001 -87 0101 0111
88 1010 1000 -88 0101 1000
89 1010 0111 -89 0101 1001
90 1010 0110 -90 0101 1010
91 1010 0101 -91 0101 1011
92 1010 0100 -92 0101 1100
93 1010 0011 -93 0101 1101
94 1010 00100 -94 0101 1110
95 1010 0001 -95 0101 1111
96 1010 0000 -96 0110 0000
97 1001 1111 -97 0110 0001
98 1001 1110 -98 0110 0010
99 1001 1101 -99 0110 0011
100 1001 1100 -100 0110 0100
101 1001 1011 -101 0110 0101
102 1001 1010 -102 0110 0110
103 1001 1001 -103 0110 0111
104 1001 1000 -104 0110 1000
105 1001 0111 -105 0110 1001
106 1001 0110 -106 0110 1010
107 1001 0101 -107 0110 1011
108 1001 0100 -108 0110 1100
109 1001 0011 -109 0110 1101
110 1001 0010 -110 0110 1110
111 1001 0001 -111 0110 1111
112 1001 0000 -112 0111 0000
113 1000 1111 -113 0111 0001
114 1000 1110 -114 0111 0010
115 1000 1101 -115 0111 0011
116 1000 1100 -116 0111 0100
117 1000 1011 -117 0111 0101
118 1000 1010 -118 0111 0110
119 1000 1001 -119 0111 0111
120 1000 1000 -120 0111 1000
121 1000 0111 -121 0111 1001
122 1000 0110 -122 0111 1010
123 1000 0101 -123 0111 1011
124 1000 0100 -124 0111 1100
125 1000 0011 -125 0111 1101
126 1000 0010 -126 0111 1110
127 1000 0001 -127 0111 1111
-128 1000 0000    


References:

From the source Wikipedia: Two complement, Converting from two's complement representation.

ADVERTISEMENT