Two’s complement calculator finds the 2’s complement for the given binary numbers. Our online 2s complement calculator calculates the opposite of a binary number in its twos complement representation for binary, decimal, and signed binary to decimal or hexadecimal numbers.
What Is Two’s Complement?
Two’s Complement to decimal is the mathematical operation to reform a positive binary number into a negative binary number with an equivalent negative value.
To get the 2’s complement, just exchange a certain binary number bit by bit and add 1 to the least significant bit.
How To Calculate The Two’s Complement?
Converting the binary numbers into 2’s complement is processed by adding 1 to the right side position. With the help of the two’s complement calculator, you can change the number into one’s complement, twos complement, binary to decimal, and hexadecimal within seconds which saves you a lot of time.
Let's move on a little bit further to examine an example!
Suppose we have a number (643)10. After converting the number into the 2’s complement we get,
(1100000101)2
Now, Inverting all bits convert 1 to 0, and 0 to 1:
1st Complement = (0011111010)2
For the second complement add 1:
2nd Complement = (0011111011)2
Working of Two's Complement Calculator:
No doubt number conversion looks daunting but decimal to 2’s complement calculator makes it easy by just putting the expressions in the field. Follow the below points to compute the 2s complement.
Input:
- Select the number option either what you want to calculate (binary, decimal, hexadecimal)
- Put the values in the field
- Chose the number of binary digits
- Tap “Calculate”
Output:
With the help of our Two’s complement calculator, you can get the following calculations:
- 2nd complement of a given number
- Decimal, binary, hexadecimal, and 1's complement
- The addition & subtraction of two's complement binary number
- Step-by-step calculation
FAQs:
What Is 8-bit Binary?
8-bit two complements to decimal is the indication of the positive integers from -128 to 127 (01111111).
Where Are Two’s Complements Used?
It is mainly used to indicate binary numbers and in their arithmetic operations. It is very functional in computer number representation.
Two’s Complement Table:
In a binary system, all numbers are a combination of two digits 0 and 1. What is the complement of -30? Look at this one in the below table.
Decimal | Two’s Complement | Decimal | Two’s Complement |
1 | 1111 1111 | -1 | 0000 0001 |
2 | 1111 1110 | -2 | 0000 0010 |
3 | 1111 1101 | -3 | 0000 0011 |
4 | 1111 1100 | -4 | 0000 0100 |
5 | 1111 1011 | -5 | 0000 0101 |
6 | 1111 1010 | -6 | 0000 0110 |
7 | 1111 1001 | -7 | 0000 0111 |
8 | 1111 1000 | -8 | 0000 1000 |
9 | 1111 0111 | -9 | 0000 1001 |
10 | 1111 0110 | -10 | 0000 1010 |
11 | 1111 0101 | -11 | 0000 1011 |
12 | 1111 0100 | -12 | 0000 1100 |
13 | 1111 0011 | -13 | 0000 1101 |
14 | 1111 0010 | -14 | 0000 1110 |
15 | 1111 0001 | -15 | 0000 1111 |
16 | 1111 0000 | -16 | 0001 0000 |
17 | 1110 1111 | -17 | 0001 0001 |
18 | 1110 1110 | -18 | 0001 0010 |
19 | 1110 1101 | -19 | 0001 0011 |
20 | 1110 1100 | -20 | 0001 0100 |
21 | 1110 1011 | -21 | 0001 0101 |
22 | 1110 1010 | -22 | 0001 0110 |
23 | 1110 1001 | -23 | 0001 0111 |
24 | 1110 1000 | -24 | 0001 1000 |
25 | 1110 0111 | -25 | 0001 1001 |
26 | 1110 0110 | -26 | 0001 1010 |
27 | 1110 0101 | -27 | 0001 1011 |
28 | 1110 0100 | -28 | 0001 1100 |
29 | 1110 0011 | -29 | 0001 1101 |
30 | 1110 0010 | -30 | 0001 1110 |
31 | 1110 0001 | -31 | 0001 1111 |
32 | 1110 0000 | -32 | 0010 0000 |
33 | 1101 1111 | -33 | 0010 0001 |
34 | 1101 1110 | -34 | 0010 0010 |
35 | 1101 1101 | -35 | 0010 0011 |
36 | 1101 1100 | -36 | 0010 0100 |
37 | 1101 1011 | -37 | 0010 0101 |
38 | 1101 1010 | -38 | 0010 0110 |
39 | 1101 1001 | -39 | 0010 0111 |
40 | 1101 1000 | -40 | 0010 1000 |
41 | 1101 0111 | -41 | 0010 1001 |
42 | 1101 0110 | -42 | 0010 1010 |
43 | 1101 0101 | -43 | 0010 1011 |
44 | 1101 0100 | -44 | 0010 1100 |
45 | 1101 0011 | -45 | 0010 1101 |
46 | 1101 0010 | -46 | 0010 1110 |
47 | 1101 0001 | -47 | 0010 1111 |
48 | 1101 0000 | -48 | 0011 0000 |
49 | 1100 1111 | -49 | 0011 0001 |
50 | 1100 1110 | -50 | 0011 0010 |
51 | 1100 1101 | -51 | 0011 0011 |
52 | 1100 1100 | -52 | 0011 0100 |
53 | 1100 1011 | -53 | 0011 0101 |
54 | 1100 1010 | -54 | 0011 0110 |
55 | 1100 1001 | -55 | 0011 0111 |
56 | 1100 1000 | -56 | 0011 1000 |
57 | 1100 0111 | -57 | 0011 1001 |
58 | 1100 0110 | -58 | 0011 1010 |
59 | 1100 0101 | -59 | 0011 1011 |
60 | 1100 0100 | -60 | 0011 1100 |
61 | 1100 0011 | -61 | 0011 1101 |
62 | 1100 0010 | -62 | 0011 1110 |
63 | 1100 0001 | -63 | 0011 1111 |
64 | 1100 0000 | -64 | 0100 0000 |
65 | 1011 1111 | -65 | 0100 0001 |
66 | 1011 1110 | -66 | 0100 0010 |
67 | 1011 1101 | -67 | 0100 0011 |
68 | 1011 1100 | -68 | 0100 0100 |
69 | 1011 1011 | -69 | 0100 0101 |
70 | 1011 1010 | -70 | 0100 0110 |
71 | 1011 1001 | -71 | 0100 0111 |
72 | 1011 1000 | -72 | 0100 1000 |
73 | 1011 0111 | -73 | 0100 1001 |
74 | 1011 0110 | -74 | 0100 1010 |
75 | 1011 0101 | -75 | 0100 1011 |
76 | 1011 0100 | -76 | 0100 1100 |
77 | 1011 0011 | -77 | 0100 1101 |
78 | 1011 0010 | -78 | 0100 1110 |
79 | 1011 0001 | -79 | 0100 1111 |
80 | 1011 0000 | -80 | 0101 0000 |
81 | 1010 1111 | -81 | 0101 0001 |
82 | 1010 1110 | -82 | 0101 0010 |
83 | 1010 1101 | -83 | 0101 0011 |
84 | 1010 1100 | -84 | 0101 0100 |
85 | 1010 1011 | -85 | 0101 0101 |
86 | 1010 1010 | -86 | 0101 0110 |
87 | 1010 1001 | -87 | 0101 0111 |
88 | 1010 1000 | -88 | 0101 1000 |
89 | 1010 0111 | -89 | 0101 1001 |
90 | 1010 0110 | -90 | 0101 1010 |
91 | 1010 0101 | -91 | 0101 1011 |
92 | 1010 0100 | -92 | 0101 1100 |
93 | 1010 0011 | -93 | 0101 1101 |
94 | 1010 00100 | -94 | 0101 1110 |
95 | 1010 0001 | -95 | 0101 1111 |
96 | 1010 0000 | -96 | 0110 0000 |
97 | 1001 1111 | -97 | 0110 0001 |
98 | 1001 1110 | -98 | 0110 0010 |
99 | 1001 1101 | -99 | 0110 0011 |
100 | 1001 1100 | -100 | 0110 0100 |
101 | 1001 1011 | -101 | 0110 0101 |
102 | 1001 1010 | -102 | 0110 0110 |
103 | 1001 1001 | -103 | 0110 0111 |
104 | 1001 1000 | -104 | 0110 1000 |
105 | 1001 0111 | -105 | 0110 1001 |
106 | 1001 0110 | -106 | 0110 1010 |
107 | 1001 0101 | -107 | 0110 1011 |
108 | 1001 0100 | -108 | 0110 1100 |
109 | 1001 0011 | -109 | 0110 1101 |
110 | 1001 0010 | -110 | 0110 1110 |
111 | 1001 0001 | -111 | 0110 1111 |
112 | 1001 0000 | -112 | 0111 0000 |
113 | 1000 1111 | -113 | 0111 0001 |
114 | 1000 1110 | -114 | 0111 0010 |
115 | 1000 1101 | -115 | 0111 0011 |
116 | 1000 1100 | -116 | 0111 0100 |
117 | 1000 1011 | -117 | 0111 0101 |
118 | 1000 1010 | -118 | 0111 0110 |
119 | 1000 1001 | -119 | 0111 0111 |
120 | 1000 1000 | -120 | 0111 1000 |
121 | 1000 0111 | -121 | 0111 1001 |
122 | 1000 0110 | -122 | 0111 1010 |
123 | 1000 0101 | -123 | 0111 1011 |
124 | 1000 0100 | -124 | 0111 1100 |
125 | 1000 0011 | -125 | 0111 1101 |
126 | 1000 0010 | -126 | 0111 1110 |
127 | 1000 0001 | -127 | 0111 1111 |
-128 | 1000 0000 |
References:
From the source Wikipedia: Two complement, Converting from two's complement representation.