Använd denna online-kalkylator för factoring som hjälper dig att beräkna faktorer för heltal och polynom. Ange ett tal och verktyget kommer enkelt att beräkna primtal, exponentiell och parade faktorer utan fördröjning.
Om du är villig att veta hur man faktoriserar trinomialer och binomialer, är att använda vår factoring-kalkylator med steg det lämpligaste alternativet för att faktorisera kvadrater. Å andra sidan kan manuella beräkningar också bemästras om du fortsätter läsa!
Undrar om faktorisering av en kvadratisk eqProceduren är densamma som att faktorisera trinomial. Anledningen är att kvadratiskt uttryck har 3 termer som gör det till ett trinomial. Den generiska formen av andragradsekvationen är:
$$ ax^{2} + bx + c = 0 $$
Om du nu tänker på hur du faktorisera kvadrater i ovanstående form, följ tekniken nedan:
$$ \left(number 1\right)*\left(number 2\right) = a*c $$
$$ \left(number 1\right) + \left(number 2\right) = b $$
$$ ax^{2} + \left(number 1\right))*x + \left(number 2\right)*x + c = 0 $$
Att använda vår factoring trinomial-kalkylator är ett effektivt och rekommenderat online sätt att faktorisera eventuella trinomials digitalt.
Anta att du har ett uttryck som:
$$ x^{2}+5x+6 $$
Efter proceduren ovan görs trinomial factoring som:
$$ x^{2}+3x+2x+6 $$
$$ x\left(x+3\right)+2\left(x+3\right) $$
$$ \left(x+2\right)\left(x+3\right) $$
Dessa är de nödvändiga faktorerna och kan även kontrolleras med hjälp av denna factoring-kalkylator med steg.
"Talet som delar ett heltal utan rest i slutet kallas en faktor"
Exempel:
Om du behöver hitta faktortalen 6, skulle dess faktorer vara 1, 2, 3 och 6. Det betyder att 1, 2, 3 eller 6 kan användas för att få "6".
För att omedelbart bestämma faktorerna för valfritt tal snarare än bara 6, kan du ange det i denna talfaktorkalkylator med steg och få detaljerade faktorer omedelbart.
Om ditt mål kommer med manuella beräkningar, kommer följande exempel att hjälpa dig att hitta alla faktorer för ett tal:
Beräkna de möjliga faktorerna för heltal 45.
$$ \text{Totala faktorer på 45} = 1, 3, 5, 9, 15, 45 $$
$$ \text{Primfaktorer på 45} = 3 × 3 × 5 $$
$$ \text{Exponentialfaktorer på 45} = 32 x 51 $$
$$ \text{Faktorpar av 45} = \left(1, 45\right), \left(3, 15\right), \left(5, 9\right) $$
När du ska hitta faktortalen för ett tal hjälper vissa regler dig med korrekta beräkningar. Dessa inkluderar:
Nummer | Faktoreringsregel |
---|---|
2 | Du kan dividera valfritt jämnt tal med 2 |
3 | Du kan bara dividera ett tal med 3 om summan av enskilda siffror i ett ursprungligt tal är delbart med 3 |
4 | Du kan dividera ett tal med 4 om de två sista individuella siffrorna dessutom är delbara med 4 |
5 | Du kan dividera tal som slutar med 5 eller 0 med 5 |
6 | Om ett tal är delbart med 2 och 3 kan du också dividera det med 6 |
7 | För att dividera ett tal med 7 måste du gå igenom delbarhetsregeln för 7 |
8 | Om de sista 3 siffrorna adderas och är delbara med 8, är det ursprungliga numret också delbart med 8 |
9 | Du kan dividera ett tal med 9 om summan av alla individuella siffror är delbar med 9 |
10 | Du kan bara dividera ett tal med 10 om det slutar med 0 |
För att bättre räkna ut faktorerna som delar talet helt kan du göra det nu med vår kostnadsfria faktorgenerator.
Vår faktorsökare bestämmer automatiskt de nödvändiga faktorerna för ett tal och polynom i ögonblick. Låt oss ta reda på hur!
Inmatning:
Produktion:
Faktorträdskalkylatorn beräknar
Med hjälp av en factoring-kalkylator med steg har vi sammanställt några viktiga faktorer i tabellen nedan för att göra dina beräkningar enkla:
Gemensamma siffror | Faktor av siffror |
---|---|
1 | 1 |
2 | 1, 2 |
3 | 1, 3 |
4 | 1, 2, 4 |
5 | 1, 5 |
6 | 1, 2, 3, 6 |
7 | 1, 7 |
8 | 1, 2, 4, 8 |
9 | 1, 3, 9 |
10 | 1, 2, 5, 10 |
11 | 1, 11 |
12 | 1, 2, 3, 4, 6, 12 |
13 | 1, 13 |
14 | 1, 2, 7, 14 |
15 | 1, 3, 5, 15 |
16 | 1, 2, 4, 8, 16 |
17 | 1, 17 |
18 | 1, 2, 3, 6, 9, 18 |
19 | 1, 19 |
20 | 1, 2, 4, 5, 10, 20 |
21 | 1, 3, 7, 21 |
22 | 1, 2, 11, 22 |
23 | 1, 23 |
24 | 1, 2, 3, 4, 6, 8, 12, 24 |
25 | 1, 5, 25 |
26 | 1, 2, 13, 26 |
27 | 1, 3, 9, 27 |
28 | 1, 2, 4, 7, 14, 28 |
29 | 1, 29 |
30 | 1, 2, 3, 5, 6, 10, 15, 30 |
31 | 1, 31 |
32 | 1, 2, 4, 8, 16, 32 |
33 | 1, 3, 11, 33 |
34 | 1, 2, 17, 34 |
35 | 1, 5, 7, 35 |
36 | 1, 2, 3, 4, 6, 9, 12, 18, 36 |
37 | 1, 37 |
38 | 1, 2, 19, 38 |
39 | 1, 3, 13, 39 |
40 | 1, 2, 4, 5, 8, 10, 20, 40 |
41 | 1, 41 |
42 | 1, 2, 3, 6, 7, 14, 21, 42 |
43 | 1, 43 |
44 | 1, 2, 4, 11, 22, 44 |
45 | 1, 3, 5, 9, 15, 45 |
46 | 1, 2, 23, 46 |
47 | 1, 47 |
48 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 |
49 | 1, 7, 49 |
50 | 1, 2, 5, 10, 25, 50 |
51 | 1, 3, 17, 51 |
52 | 1, 2, 4, 13, 26, 52 |
53 | 1, 53 |
54 | 1, 2, 3, 6, 9, 18, 27, 54 |
55 | 1, 5, 11, 55 |
56 | 1, 2, 4, 7, 8, 14, 28, 56 |
57 | 1, 3, 19, 57 |
58 | 1, 2, 29, 58 |
59 | 1, 59 |
60 | 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 |
61 | 1, 61 |
62 | 1, 2, 31, 62 |
63 | 1, 3, 7, 9, 21, 63 |
64 | 1, 2, 4, 8, 16, 32, 64 |
65 | 1, 5, 13, 65 |
66 | 1, 2, 3, 6, 11, 22, 33, 66 |
67 | 1, 67 |
68 | 1, 2, 4, 17, 34, 68 |
69 | 1, 3, 23, 69 |
70 | 1, 2, 5, 7, 10, 14, 35, 70 |
71 | 1, 71 |
72 | 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 |
73 | 1, 73 |
74 | 1, 2, 37, 74 |
75 | 1, 3, 5, 15, 25, 75 |
76 | 1, 2, 4, 19, 38, 76 |
77 | 1, 7, 11, 77 |
78 | 1, 2, 3, 6, 13, 26, 39, 78 |
79 | 1, 79 |
80 | 1, 2, 4, 5, 8, 10, 16, 20, 40, 80 |
81 | 1, 3, 9, 27, 81 |
82 | 1, 2, 41, 82 |
83 | 1, 83 |
84 | 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84 |
85 | 1, 5, 17, 85 |
86 | 1, 2, 43, 86 |
87 | 1, 3, 29, 87 |
88 | 1, 2, 4, 8, 11, 22, 44, 88 |
89 | 1, 89 |
90 | 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 |
91 | 1, 7, 13, 91 |
92 | 1, 2, 4, 23, 46, 92 |
93 | 1, 3, 31, 93 |
94 | 1, 2, 47, 94 |
95 | 1, 5, 19, 95 |
96 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 |
97 | 1, 97 |
98 | 1, 2, 7, 14, 49, 98 |
99 | 1, 3, 9, 11, 33, 99 |
100 | 1, 2, 4, 5, 10, 20, 25, 50, 100 |
104 | 1, 2, 4, 8, 13, 26, 52, 104 |
110 | 1, 2, 5, 10, 11, 22, 55, 110 |
120 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 |
121 | 1, 11, 121 |
126 | 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126 |
135 | 1, 3, 5, 9, 15, 27, 45, 135 |
147 | 1, 3, 7, 21, 49, 147 |
162 | 1, 2, 3, 6, 9, 18, 27, 54, 81, 162 |
175 | 1, 5, 7, 25, 35, 175 |
189 | 1, 3, 7, 9, 21, 27, 63, 189 |
196 | 1, 2, 4, 7, 14, 28, 49, 98, 196 |
210 | 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210 |
225 | 1, 3, 5, 9, 15, 25, 45, 75, 225 |
245 | 1, 5, 7, 35, 49, 245 |
256 | 1, 2, 4, 8, 16, 32, 64, 128, 256 |
288 | 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 288 |
300 | 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 300 |
360 | 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360 |
375 | 1, 3, 5, 15, 25, 75, 125, 375 |
400 | 1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 400 |
500 | 1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500 |
625 | 1, 5, 25, 125, 625 |
Keep in touch
Contact Us© Copyright 2025 by calculatored.com