تحسب حاسبة التباين التباين بين متغيرين عشوائيين منفصلين، X وY، وتوضح كيفية ارتباط مجموعتين من البيانات ببعضهما البعض. تُظهر لك حاسبة cov(x y) الخاصة بنا أيضًا نتائج سريعة ودقيقة.
التباين هو قياس العلاقة بين متغيرين عشوائيين، X وY. ويشير إلى مدى اختلاف المتغيرات العشوائية معًا.
رمز التغاير هو Cov(X, Y).
تقوم حاسبة التباين المشترك عبر الإنترنت بحساب تباين العينة والتباين السكاني بين متغيرين قابلين للتغيير X وY.
صيغة التباين السكاني:
$$ \begin{align} \sigma_{XY}=\sum_{i=1}^N\frac{(x_i-\mu_X)(y_i-\mu_Y)}{N}\end{align} $$
أين،
إذا كان X وY مرتبطان بشكل مباشر، فإن σXY موجبة. إذا كان X وY مرتبطان عكسيًا، فإن σXY سالبة.
نموذج صيغة التغاير:
$$ \begin{align} s_{XY} &=\frac{\sum_{i=1}^n(x_i-\bar{X})(y_i-\bar{Y})}{n-1}\end{align} $$
أين،
تعبر قيم التغاير الموجب عن علاقة إيجابية، وتشير قيم التغاير السالب إلى وجود علاقة سلبية بين متغيرين.
توضح إحصائيات التباين الاتجاه في العلاقات الخطية بين المتغيرات. دعونا نراجع مثالاً لحساب تباين العينة لتوضيح مفهومها!
لنفترض أن مجموعة البيانات التي تكون فيها قيم X وY هي:
س = 3، 4، 1، 5، 2
ص = 2، 6، 3، 4، 5
كيفية العثور على التباين للعينة والسكان لهذين المتغيرين في مجموعة البيانات؟
المتوسط X̅ = 3 + 4 + 1 + 5 + 2 / 5 = 3
المتوسط = 2 + 6 + 3 + 4 + 5 / 5 = 4
معادلة التباين السكاني هي:
$$ \begin{align} \sigma_{XY}=\sum_{i=1}^N\frac{(x_i-\mu_X)(y_i-\mu_Y)}{N}\end{align} $$
التباين السكاني = [(3-3) * (2-4)] + [(4-3) * (6-4)] + [(1-3) * (3-4)] + [(5-3) ) * (4-4)] + [(2-3) * (5-4)] / 5
= [(0) * (-2)] + [(1) * (2)] + [(-2) * (-1)] + [(2) * (0)] + [(-1) * (15
= 3/5
= 0.6
الآن نقوم بحساب التغاير المشترك للعينة بمساعدة معادلة التغاير على النحو التالي.
$$ \begin{align} s_{XY} &=\frac{\sum_{i=1}^n(x_i-\bar{X})(y_i-\bar{Y})}{n-1}\end{align} $$
نموذج التغاير = [(3-3) * (2-4)] + [(4-3) * (6-4)] + [(1-3) * (3-4)] + [(5-3) ) * (4-4)] + [(2-3) * (5-4)] / 5-1
= [(0) * (-2)] + [(1) * (2)] + [(-2) * (-1)] + [(2) * (0)] + [(-1) * (١)] / ٤
= 3/4
= 0.75
باستخدام الصيغة، يمكننا تحديد ما إذا كانت الوحدات تزيد أم تنقص. لا يستخدم التغاير وحدة القياس، لذلك لا يمكننا تحديد الدرجة التي تتحرك بها المتغيرات معًا.
تقوم أداتنا عبر الإنترنت بحساب العلاقة الإحصائية بين مجموعتين متساويتين من البيانات (x، y). عليك فقط اتباع الخطوات المحددة.
مدخل:
انتاج:
تمنحك حاسبة التغاير المشترك ذات الاحتمالية عبر الإنترنت المخرجات التالية عن طريق وضع البيانات المطلوبة في الحقول المخصصة.
تتراوح قيمة التباين من -∞ إلى +∞.
التباين هو القياس لتسجيل كيفية اختلاف متغيرين، وعلى الجانب الآخر، يشير الارتباط إلى كيفية ارتباط متغيرين. الارتباط هو النسخة المقاسة من التباين.
ويستخدم كلا المصطلحين في التطبيقات الإحصائية. يشير التباين إلى مدى انتشار مجموعة من البيانات حول قيمتها المتوسطة، في حين أن التباين هو مقياس العلاقة الاتجاهية بين متغيرين عشوائيين.
قد يكون التباين موجبًا وقد يكون سالبًا. يكشف التباين السلبي عن وجود علاقة عكسية بين المتغيرات. يعني أن زيادة واحدة تؤدي إلى نقصان الأخرى.
Keep in touch
Contact Us© Copyright 2025 by calculatored.com